Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 3221-3230, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-921419

RESUMEN

The aim of this study was to develop a blocking enzyme-linked immunosorbent assay (bELISA) based on a biotinylated nanobody target the S1 protein of porcine epidemic diarrhea virus (PEDV) for detecting the anti-PEDV antibodies and evaluating the immune effect of the vaccine. The gene encoding the single-domain antibody sdAb3 target the PEDV S1 protein was amplified and the Avitag sequence was fused at its 3'-end. The PCR product was cloned into the expression vector pET-21b for expression and purification of the sdAb3-Avitag protein. The purified sdAb3-Avitag fusion protein was biotinylated and its activity was determined. Using the recombinant S1 protein as a coating antigen, a bELISA was established and optimized. Serum samples were tested in parallel by the bELISA and a commercial kit. The recombinant vector pET21b-sdAb3-Avitag was constructed to express the tagged sdAb3. After induction for expression, the biotin-labeled sdAb3 (sdAb3-Biotin) with high purity and good activity was obtained. For the optimized bELISA, the coating concentration of the S1 protein was 200 ng/well, the serum dilution was 1:2 and incubated for 2 h, the dilution ratio of the biotinylated sdAb3 was 1:8 000 and incubated for 30 min, the dilution of the enzyme-labeled antibody was 1:5 000 and incubated for 30 min. The bELISA had no cross reaction with the sera of major porcine viruses including transmissible gastroenteritis virus, porcine reproductive and respiratory syndrome virus and showed good specificity and reproducibility. For a total of 54 porcine serum samples tested, the overall compliance rate of the bELISA with a commercial kit was 92.56%. This study developed a rapid and reliable bELISA method, which can be used for serosurveillance and vaccine evaluation for PEDV.


Asunto(s)
Animales , Anticuerpos Antivirales , Infecciones por Coronavirus/veterinaria , Ensayo de Inmunoadsorción Enzimática , Virus de la Diarrea Epidémica Porcina/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Anticuerpos de Dominio Único , Porcinos , Enfermedades de los Porcinos
2.
Protein & Cell ; (12): 717-733, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-888715

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.


Asunto(s)
Humanos , Adenosina Monofosfato/uso terapéutico , Alanina/uso terapéutico , Células Epiteliales Alveolares/virología , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/virología , Regulación hacia Abajo , Descubrimiento de Drogas , Células Madre Embrionarias Humanas/metabolismo , Inmunidad , Metabolismo de los Lípidos , Pulmón/virología , ARN Viral/metabolismo , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20172924

RESUMEN

Wastewater-based epidemiology (WBE) has emerged as an effective environmental surveillance tool in monitoring fecal-oral pathogen infections within a community. Congruently, SARS-CoV-2 virus, the etiologic agent of COVID-19, has been demonstrated to infect the gastrointestinal tissues, and be shed in feces. In the present study, SARS-CoV-2 RNA was concentrated from wastewater, sludge, surface water, ground water, and soil samples of municipal and hospital wastewater systems and related environment in Wuhan during the COVID-19 middle and low risk periods, and the viral RNA copies quantified using RT-qPCR. From the findings of this study, during the middle risk period, one influent sample and three secondary treatment effluents collected from Waste Water Treatment Plant 2 (WWTP2), as well as two influent samples from wastewater system of Hospital 2 were SARS-CoV-2 RNA positive. One sludge sample collected from Hospital 4; which was obtained during low risk period, was positive for SARS-CoV-2 RNA. These study findings demonstrate the significance of WBE in continuous surveilling and monitoring of SARS-CoV-2 at the community level, even when the COVID19 prevalence is low. Therefore, the application of WBE is principally useful in tracking the level of infections in communities and the risk assessment of the secondary environment.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-244350

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we demonstrated that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids. Ciliated cells, alveolar type 2 (AT2) cells and rare club cells were virus target cells. Electron microscopy captured typical replication, assembly and release ultrastructures and revealed the presence of viruses within lamellar bodies in AT2 cells. Virus infection induced more severe cell death in alveolar organoids than in airway organoids. Additionally, RNA-seq revealed early cell response to SARS-CoV-2 infection and an unexpected downregulation of ACE2 mRNA. Further, compared to the transmembrane protease, serine 2 (TMPRSS2) inhibitor camostat, the nucleotide analog prodrug Remdesivir potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model for SARS-CoV-2 infection and drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...